If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t=-3
We move all terms to the left:
t^2+10t-(-3)=0
We add all the numbers together, and all the variables
t^2+10t+3=0
a = 1; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·1·3
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{22}}{2*1}=\frac{-10-2\sqrt{22}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{22}}{2*1}=\frac{-10+2\sqrt{22}}{2} $
| -15x=-17 | | 21=2x-7* | | 5x6-6=14 | | 1/10q+18=20 | | 5(2+5x)=6(3x-3) | | -1x7=-11x7=72x7=140x7=0 | | 3x-4+45=90 | | 3(3x-8)=4x=6 | | 51=p+17 | | 3+6=e | | 25x−3=17 | | e=(22600-5600)/22600 | | -(5+3v)=4+6v | | 1-10u=-13u+19 | | 7(a-4)-2a=19+3(a+2) | | 3(3x-8)=4x | | (6x+4)+62=180 | | 5v-(7v-5)=9-2v | | -19+x=31 | | 2.5x−3=17 | | 2(1x+3)=2x+6 | | -28+2r=2(2+3r) | | 5x/9-11=59 | | (4m-3)-(m-5)=-7 | | -84+2x=28-5x | | (6x)x7=17 | | 9x1=x+10 | | -5=7y-1 | | 5(b+3)=b+39 | | -1.2(t-19)=1.2 | | (3x+1)+(-25+x)=180 | | 3-5b=38 |